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SUMMARY 
Linearization of the non-linear systems arising from fully implicit schemes in computational fluid dynamics 
often result in a large sparse non-symmetric linear system. Practical experience shows that these linear 
systems are ill-conditioned if a higher than first-order spatial discretization scheme is used. To solve these 
linear systems, an efficient multilevel iterative method, the z-GMRES method, is proposed which incorpor- 
ates a diagonal preconditioning with a damping factor a so that a balanced fast convergence of the inner 
GMRES iteration and the outer damping loop can be achieved. With this simple and efficient precondition- 
ing and damping of the matrix, the resulting method can be effectively parallelized. The parallelization 
maintains the effectiveness of the original scheme due to the algorithm equivalence of the sequential and the 
parallel versions. 

KEY WORDS Large sparse non-symmetric linear system Multilevel iteration Generalized minimal residual 
method Parallel computing Distributed memory Computational fluid dynamics 

1. INTRODUCTION 

In the numerical solution of Euler and Navier-Stokes equations, there are two major classes of 
problems, steady and unsteady. For steady-state solutions, a time-dependent approach is usually 
followed using the unsteady governing equations. There are two advantages of doing so. Firstly, 
the starting of the solution is robust in the sense that non-physical states can easily be avoided as 
long as the initial flow field is physically defined and the time step is small enough so that 
a physical path can be followed during the process of the solution. Secondly, the same code can be 
used for both steady and unsteady problems if accuracy is maintained. However, this approach 
also brings out some problems. As an iterative procedure for steady-state solution, the physical 
path is not necessarily a fast convergence path. Acceleration techniques based on the time- 
dependent approach, such as local time stepping, multigrid and the use of approximate implicit 
operators, destroy the time accuracy and, therefore, the second advantage cannot normally be 
achieved. 

In the time-dependent approach, the unsteady governing equations can be discretized in time 
by an explicit or an implicit method. Using an explicit method, the convergence for a steady-state 
problem can be extremely slow due to the stability restrictions on time steps even if some 
acceleration techniques were employed. Using an implicit method, unconditional stability can be 
achieved and as the time step approaches infinity the method approaches the Newton iterative 
method for the solution of the non-linear system corresponding to the steady-state problem. 
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However, it is generally not easy (1) to get the real Jacobian of the non-linear system and (2) to 
solve the resulting large sparse non-symmetric linear system. Previous researchers in CFD have 
tried to avoid these two difficulties in the following ways, respectively: (1) to construct simplified 
implicit operators, e.g. to use only first-order inviscid implicit operators; (2) to use approximate 
factorization for the multidimensional implicit operator so that the resulting linear system can be 
solved easily. Both of these naturally negate the advantages of the implicit scheme. The time step 
size for a simplified implicit method is still limited due to the inconsistency of the implicit 
operator and the right-hand side (the non-linear system) and the factorization error which 
increases with the time step. Simplified implicit methods will thus obviously not approach 
a Newton iterative method as the time step approaches infinity. 

Instead of avoiding the difficulties for a fully implicit method, Qin and Richards' tried to tackle 
the problem directly in order to achieve fast convergence for the steady-state solution The sparse 
quasi-Newton method (SQN) and the sparse finite difference Newton method (SFDN) were 
proposed so that the difficulty in getting the Jacobian of the non-linear system is tackled. 

After the linearization of the non-linear system is achieved, a large sparse non-symmetric linear 
system results. For one-dimensional problems, a block pentadiagonal matrix solver was devised 
to obtain a direct solution of the resulting linear system. For multidimensional problems the 
block line Gauss-Seidel iterative method was used. As pointed out by Qin and Richards,' the 
convergence of the method for the linear system is still not satisfactory if higher than first-order 
spatial discretization is used. A similar problem resulting from the use of high-order schemes was 
also found by Hemker and his to achieve an effective application of the multigrid 
method. They introduced a defect correction technique to tackle the problem. 

In this paper, we propose a new efficient multilevel iterative method for the solution of the 
sparse non-symmetric linear system arising from the application of the fully implicit method for 
steady-state solutions or from the SQN method and the SFDN method for the non-linear system 
corresponding to the steady governing equations. We denote the linear system by 

AX = b, (1) 

where the structure of A depends on the spatial discretization scheme used. Typically we consider 
the following system resulting from a second- or third-order high-resolution scheme using 
a structure grid for a two-dimensional Navier-Stokes solution. The linear system will be a block 
13-point diagonal matrix which can be denoted as shown in Figure 1. 

r- 1 

L 

Figure 1. A block 13-point diagonal matrix 
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2. THE a-GMRES METHOD 

2.1. The GMRES method 

The generalized minimal residual (GMRES) algorithm was proposed by Saad and Schultz' for 
solving non-symmetric linear systems. It seeks a solution x in the form x = xo + z, where xo is the 
initial guess and z belongs to the Krylov subspace K =  ( y o ,  Aro, . . . , A k - ' r o )  (yo= b -Axo) .  The 
solution x is chosen such that 11 b - Ax 11 is minimum. 

First we find an orthonormal basis of space K via Gramm-Schmidt orthonormalization. In 
this process, a (k+ 1) x k Hessenberg matrix i f k  is formed. The following calculations are 
performed. 

Initially, we set 

and for i = l  to k 
i 

i?i+l=Aui- 1 fli+i,juj, where Bi+l.j=(AUi, Vj) 
j =  1 

After k steps, the Hessenberg matrix is formed as 

We then have' 

min IIb-AxII =min 116e1-HkyI(, 
Z€K yeRk 

where z=x-xo, S=llroJI, e l= ( l ,  0,. . . , O):+, and y = ( y l ,  y2, . . . , y k ) i .  
The problem is now reduced to the solution of a smaller least-squares problem. Due to the 

special structure of the Hessenberg matrix Hk,  a QR factorization algorithm can easily be applied. 
For an efficient practical calculation, the dimension of the Krylov subspace k, is very small as 

compared to the order of the matrix A because storing all the previous directions is very costly. In 
application, the algorithm is restarted every k steps until the required accuracy is achieved. In the 
numerical tests given below, we choose k = 30. 

2.2. Preconditioning and' damping of the matrix 

The linear GMRES method has been applied to finite element solutions of CFD problems by 
Mallet et aL6 and in its non-linear version by Wigton et al.' All successful applications required 
an efficient preconditioning. Bearing in mind the possible parallelization of the preconditioner, we 
devise a simple preconditioner. Its effectiveness is further enhanced by the introduction of 
a damping factor, which we describe as follows: 
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Let D=diag(A), such that if A is a block-structured matrix, D represents a block diagonal 
matrix. For equation (l), the following diagonal preconditioning is applied 

D - 'Ax = D- b. 

This diagonal preconditioning has the following advantages: (1) it is simple to programme; (2) the 
operation is localized so that parallelization can be implemented effectively. However, it has been 
found from numerical tests of current problems that this simple preconditioning alone is not able 
to overcome the non-convergence using the GMRES method as illustrated in Figure 2. 

(2) 

We now introduce a damping factor a into equation (2): 

(aZ + D- 'A)x = D- ' b (a >O). (3) 
It was found through numerical tests that equation (3) can now be solved very efficiently by the 
GMRES method. Figure3 shows the convergences of the GMRES method as applied to 
equation (3) with different values of the damping factor a. The figure illustrates that the larger the 
a the faster the convergence. However, it should also be noted that with a very small a the 
non-convergence mentioned does still appear. 

2 

0 

-2 
h 

z - 4  
L 
Y 

-6 - 
-8 

1 -1 0 

-1 3 1 .- . 
0 100 200 

number of restarts of GMRES algorithm 

Figure 2. Convergence of GMRES algorithm for ( D - ' A ) x = D - ' b  
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Figure 3. Convergence of GMRES algorithm for ( a l + D - ' A ) x = D - ' b  
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2.3. The a-GMRES multilevel iterative method 

loop has to be introduced. This is done through a multilevel iterative scheme and written as 
It is clear that equation (3) is not equivalent to equation (2). To solve equation (2), an outer 

(a1 + D -  lA)x"+ = D -  ' b +  ax". (4) 

Given x", equation (4) is solved for X"" using GMRES method. This procedure is continued until 
the sequence x" is converged. We have proved the following convergence theorem for the iterative 
procedure (4) as follows: 

Theorem 

(1) Zfx" converges to x*, x* will be the solution of Equation (2). 
(2) There exists a positive number j?>O such that if O<a<B, the iterative procedure (4) 

Prooj: 

(1) This is an obvious result of equation (4). 
(2) From equation (4), we have 

converges. 

x"+1 -x"- - (a1 + D -  A)-  [ ( D  - ' b + ax") - (D-  ' b + ax"-')] 

= a(aZ + D-'A)-  (x" - x"- ' ) 
= a"(al+ D - ' A)-"(x' - x O). 

Thus 

1) x"+ -x" 11 <a" 11 (a1 + D -  'A)-" 11 11 x1 -xo 11 < [ a  11 (aZ+D-'A)-' I I ] "  11 x 1  - x o  11. 
Let us define a positive function f, f ( a ) =  11 (al  + D  - ' A ) -  11. The function f is obviously a con- 
tinuous function of a and f ( 0 )  = (1 D -  'A 11 is a constant. From the continuity off, given a constant 
c > 0, we can find a1 > 0 such that when 0 < a  < a l ,  we have 

0 <f(a)  < f ( O )  + c. 

On the other hand, for a given constant E, O < E <  1, we can find a 2 > 0  such that 

a2 [ f ( O )  + c]  < 1 - E. 

Let j?=min{al, a*}  and choose a, O<a<j?, we have 

a )I (aZ + D -  'A)- '  11 = a f ( a )  < a2 [ f ( O )  + c ]  < 1 - E. 

Thus, 

11 X"+ -x" 11 < ( l - E ) "  11 x' - XO 11. 
Therefore we have proved the convergence of the iterative procedure (4). 

In practical application, a value of a has to be selected to balance the convergence of the outer 
iterative procedure (4) and that of the inner GMRES algorithm. 

2.4. Numerical tests and discussion 

The foregoing numerical tests have been carried out on a typical matrix resulting from the use 
of the SFDN method to solve the locally conical Navier-Stokes equations for compressible flow. 
The spatial discretization scheme used is the Osher flux difference splitting scheme. The formal 
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accuracy is third order for the convective fluxes and second order for the diffusive fluxes. The case 
is a laminar Mach 7.95 flow around a sharp cone with a cold wall and at an angle of attack of 24". 
This case produces a flow which has a large separated flow region with embedded shock wave, in 
the leeward side of the cone and strong gradient in the thin boundary layer on the windward side. 
Accurate validation with experiment was achieved in flow field and heat transfer distribution. The 
grid in the cross-section is 33 x 33. Thus, the resulting matrix to be solved is a block 13-point 
structured matrix of order 31 x 31 x 5. Figure 4 shows the convergence histories for different 
values of damping factor a. Let c1 be the convergence criterion of the inner GMRES algorithm 
and c2 be the convergence criterion of the outer loop of a-GMRES algorithm. In the calculation 
plotted in Figure 4, we choose ci = lo-' and c2 = lo-''. Since the main calculation time is spent 
in the inner GMRES algorithm, we use the total number of restarts of the GMRES algorithm as 
a unit to measure the progress of the calculation. 

Table I shows the details of the calculation for different a. It should be noted that for the case of 
a = 0.05 the GMRES algorithm cannot converge to the machine zero but this does not influence 
the convergence of the a-GMRES algorithm because the full convergence of the inner iteration is 
not required. From this table we can also see that the performance of the multi-iterative method is 
not sensitive to the choice of a tested. 

Table I1 shows the CPU time required using different computers for solving the linear system 
of the test case where a=Ol,  a1=0.5 and c2=10-". 

Figure 5 shows the overall convergence of the solution of the NS equations using the SFDN 
and SQN methods. As for the Newton method, a good initial guess is an important aspect for 
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Figure 4. Convergence of a-GMRES algorithm for A x = b  

Table I. Effects of different a 

a = 0.05 

a = 0.10 

a = 0.15 

a = 0.20 

a Iterative number of outer loop of Total restart number of 
a-GMRES algorithm GMRES algorithm 

0.05 
010 
0.15 
0.20 

62 
110 
159 
206 

193 
192 
201 
214 
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Table 11. CPU time on different machines 

Computer CPU time (s) 

IBM 3090 with vectorization 330 
IBM 3090 without vectorization 776 
IBM RS/6000 777 
MEIKO CS with 1 T800 transputer 20852 
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Figure 5. Convergence bf SFDN and SQN methods using a-GMRES solver for NS solution 

a successful application of the SFDN, SQN or other Newton-like methods. The initial guess used 
here was provided by an explicit time-dependent approach using the Runge-Kutta method with 
local time stepping, which is robust when starting the solution from free stream conditions but 
slow in convergence. Let c3 be the convergence criterion of the solution of the NS equations. In 
Figure 5 we have chosen el = lo-', cZ= lo-' and c3 = lo-'' in the SFDN method and c1 = lo-', 
ez = lo-' and e3= lo-'' in the SQN method. 

3. PARALLELIZATION OF THE a-GMRES METHOD ON A DISTRIBUTED MEMORY 
PARALLEL COMPUTER 

Parallelization of the GMRES method on a shared-memory parallel computer is straightforward. 
But on distributed-memory machines, which are becoming popular because of their low cost and 
ability to employ large overall memory, communication between processors has to be considered. 
Furthermore, preconditioning needs more serious consideration in the parallel environment. 
Incomplete LU (ILU) factorization as a preconditioner for the GMRES algorithm appears 
effective for many applications using a sequential computer. The full parallelization of ILU, 
however, is difficult to achieve. To apply ILU on vectorized shared-memory multiprocessors, 
Radicati and Robert' and Venkatakrishnan et a1.' used local ILU techniques. Although it still 
serves as a useful preconditioner, its effectiveness is degraded as compared with a global ILU 
preconditioner on a sequential computer. The a-GMRES method presented above which com- 
bines a diagonal preconditioner with a damping procedure to provide an effective GMRES 
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algorithm is fully parallelizable as described below. The parallelization maintains the effectiveness 
of the original scheme due to the algorithm equivalence of the sequential and the padlel  versions. 

3.1. Matrix and vector storage 

the matrix A in columns as 
Assume there are M processors available and the matrix A is of order N (N >M). We can write 

A = [ A ' ,  A ' , .  . . , A M ] ,  

where A" is an N x L matrix, m= 1,2,. . . , M and L = N / M  if N / M - [ N / M ] = O ;  L = [ N / M ]  for 
some A" and L= [ N I M ]  + 1 for the other A" if N / M  - [ N / M ]  >O. 

The vectors x and b can be written as 

where X" and b" are vectors of order L corresponding to A", m= 1, 2, . . . , M .  

processor m. 
With the splitting of matrix A and of vectors x and b described above, we store A", X" and b" in 

3.2. Parallelization of the multilevel iterative method 

From the GMRES algorithm described in Section 2.1, the main tasks of parallelization are 
(i) the parallelization of the block diagonal preconditioner, (ii) the product of a matrix and a 
vector and (iii) the inner product of two vectors. We describe these aspects in the following sub- 
sections before dealing with the overall scheme. 

3.2.1. Parallelization of the block diagonal preconditioner. As described in Section 3.1, the 
matrix A is stored in the processors according to columns. Thus D" is stored in processor m and 
D- ' A  results in a row transformation to A.  In this way, some elements of D m  are required for the 
neighbouring processors and corresponding communication needs to be arranged. 

3.2.2. Parallelization of a matrix-vector product. Let y = Ax, i.e. 

we have 
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* * 

=( *)+[ ; )+. . .+(  * * 
* * j 

where =. indicates the communication of data among different processors to form y. In this way, 
we divide the task of calculating Ax to M processors by calculating A"x" on processor m and the 
resulting vector y is again distributed to the M processors. The only communication required in 
the calculation is in the formation of y. Due to the sparsity of the matrix A,  this communication is 
only of a limited nature. The distribution of the matrix data in columns can be mapped to that 
carried out in the geometric domain decomposition approach to parallelization. 

3.2.3. Parallelization of inner product of vectors. The calculation of the inner product of two 
vectors a and b is equal to the sum of the inner products of their corresponding components and, 
therefore, can easily be paraiielized as illustrated below. 

M 
(a, b)= 1 (a", b"). 

m =  1 

3.2.4. Parallelization of the GMRES method. The GMRES method as outlined in Section 2.1 
is implemented in parallel as follows. In processor m, we perform the following calculations and 
communications. Initially, we set 

CT = r t ,  

where the calculation of (I ro (1 requires the collection of the partial inner products camed out on 
each processor, and obtain 

For i = l  to k 
A"'ui'' = $', 

where the matrix-vector product operation and its parallelization have beem discussed in 
Section 3.2.2. The elements of the Hessenberg matrix are calculated using 

M 
Bi+ I , , =  C (fi!", uTA 

m =  1 
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which also requires the collection of the partial inner products carried out on each processor. We 
then calculate 

i 
fi7+1=fiy- c / l i+l , joy,  

j =  1 

and 

which is again a collection procedure. Then we normalize the base vector as follows: 

After k steps, the Hessenberg matrix is 

From 

min (Ib-Ax(I=min I16el-HkyII, 
ZEK Y E R ~  

we solve the same least-squares problem on all the processors. 

3.4. Numerical tests and discussion 

The parallel a-GMRES algorithm has been tested on the University of Glasgow Meiko 
Computing Surface, which consists of 32 T800 transputers. The speed-up achieved using 1 to 
4 processors is illustrated in Figure 6. 
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Figure 6. Speed-up using parallel computer 
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The parallel efficiency for 2 , 3  and 4 processors are 93-8%, 91.7% and 88-1Y0, respectively. The 
parallel procedure produces the same results as those produced by the sequential procedure. 
Therefore, the accuracy and the convergence of the sequential procedure are maintained by the 
parallelization. 

4. CONCLUDING REMARKS 

An efficient multilevel iterative solver has been developed for the large sparse non-symmetric 
linear systems, which result from fully im@icit or Newton-like solutions of the steady 
Navier-Stokes equations. Fast convergence, which is insensitive to the choice of a tested, has been 
achieved in solving a practical matrix problem. Parallelization of this new linear solver has also 
been presented showing promising results. In a fashion similar to a geometric domain decomposi- 
tion approach to parallelize a code, the data of the matrix are distributed according to columns. 
The parallelization maintains the effectiveness of the original scheme due to the algorithm 
equivalence of the sequential and the parallel versions. 
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